



# How to Define the VT Reentry Circuit in Structural Heart Disease

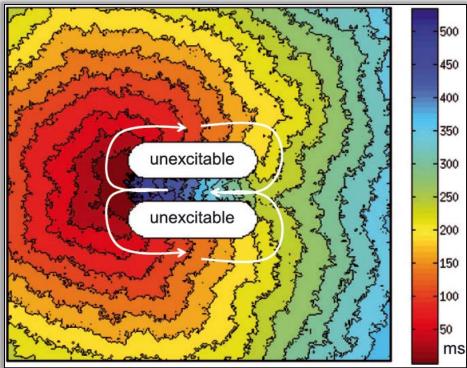
Seongwook Han, MD.PhD.

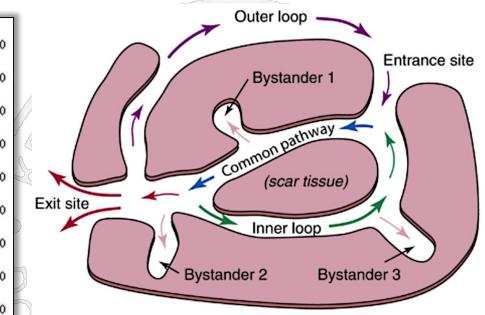
Professor of Medicine, Keimyung University School of Medicine Arrhythmia Service, Cardiology, Dongsan Medical Center





## How to define the reentry circuit of VT

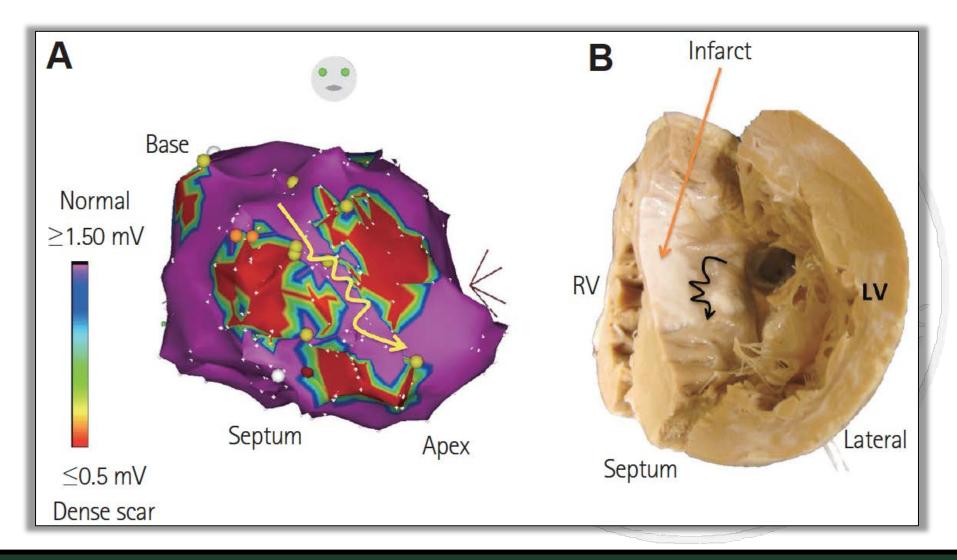

- 1. Detailed history taking of *past medical history*: MI, surgery, heart failure, family history, etc
- 2. Localization by *surface ECG of VT*
- 3. Localization by *cardiac imaging*
- 4. Electrophysiologic study
  - ✓ Substrate mapping: abnormal signals @ sinus rhythm
  - Activation mapping & entrainment mapping
  - Pacemapping during sinus rhythm based on substrate mapping




# **Mechanism of Scar Related VT**

- Reentry: VT associated with healed or healing MI in > 95 %
- Originates from surviving bundles of myocardium within the scar, separated by connective tissue, fibrosis and disordered intercellular coupling
- Substrate develops gradually *during the first 2 weeks following MI* and once established, remains indefinitely

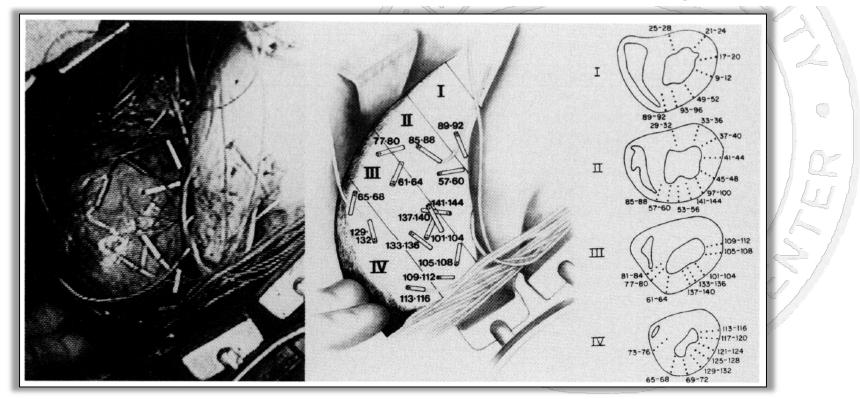
#### Figure of 8 reentry






Anatomical labyrinth circuit, created by strands of viable myocardium within the scar, with *potential for multiple reentry circuits* 

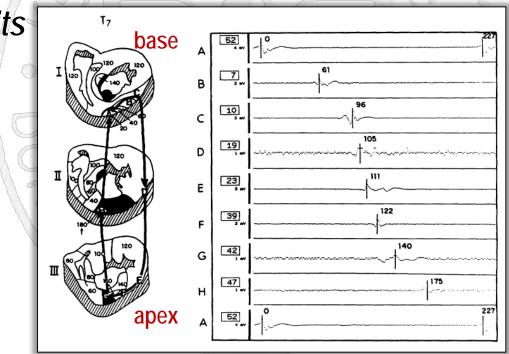
Almendral J, et al. PACE 2013; 36:508

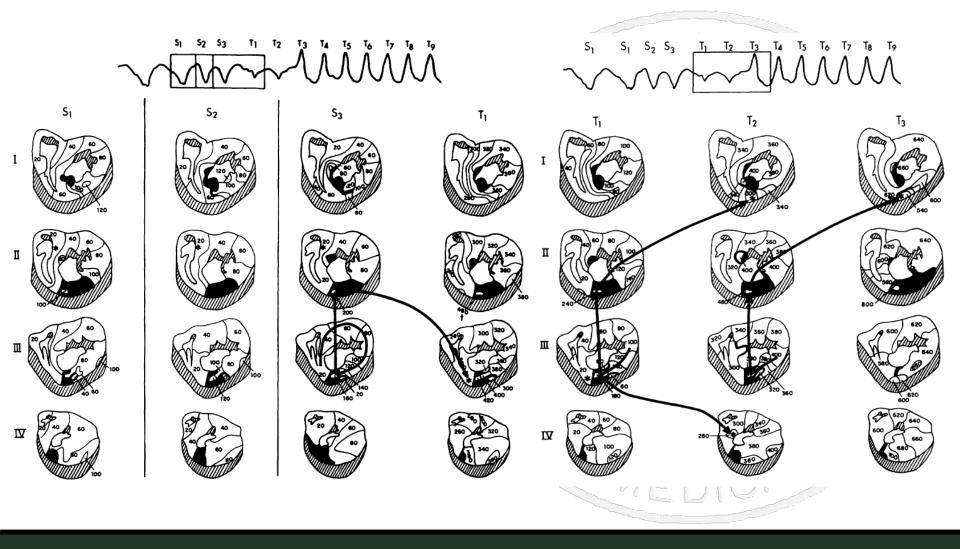

### Substrate of Scar related VT



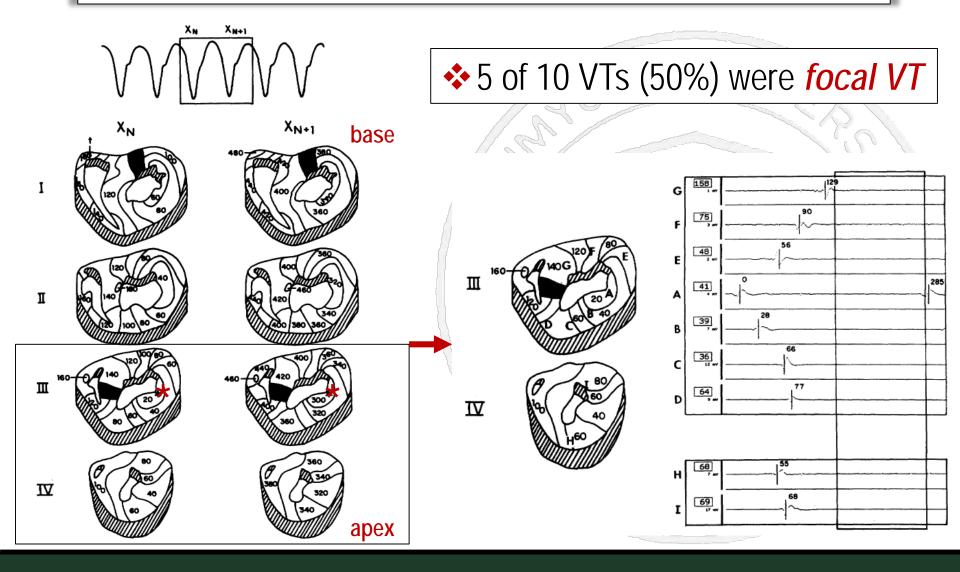
Keimyung University Dongsan Medical Center

Nazer B & Gestenfeld EP. Korean Circ J 2014;44:201


 Enrolled 13 patients with *healed MI & refractory VT* 10 VTs in 8 patients were mappable with *plunge needle electrodes (39 needles; 156 intramural recording sites)*



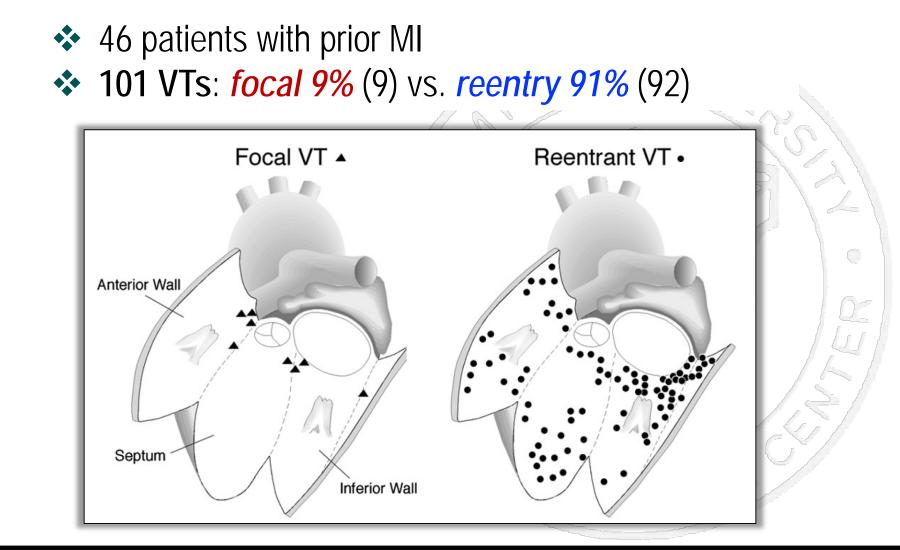

Keimyung University Dongsan Medical Center


#### *Pogwizd SM et al. Circ* 1992;86:1872

- ✤ 5 of 10 VTs (50%) were *reentrant sustained VT*: initiated in subendocardium or epicardium by *intramural reentry*
- Functional and anatomic block were prominent in the subendocardium & midmyocardium
- Multiple simultaneous circuits can be present






*Pogwizd SM et al. Circ* 1992;86:1872



#### Keimyung University Dongsan Medical Center

#### *Pogwizd SM et al. Circ* 1992;86:1872

# Focal mechanism of ventricular tachycardia in coronary artery disease



Das MK, et al. Heart Rhythm 2010;7:305



# How to define the reentry circuit of VT

- 1. Detailed history taking of *past medical history*: MI, surgery, heart failure, family history, etc
- 2. Localization by *surface ECG of VT*
- 3. Localization by *cardiac imaging*
- 4. Electrophysiologic study
  - ✓ *Substrate mapping*: abnormal signals @ sinus rhythm
  - Activation mapping & entrainment mapping
  - Pacemapping during sinus rhythm based on substrate mapping



#### ~~~~

### **General Principles**

- Cardiac site at the time of QRS onset: exit site from a VT circuit in reentrant tachycardia
- Exit site or region from a VT circuit is typically wider than the diastolic isthmus (which may be >1 cm away)
- QRS morphology of VT
  - can not direct to the actual ideal ablation target itself
  - serve as a guide as to where initial mapping effort should be directed



#### ~ KUDMC

### **General Principles**

#### **RBBB** pattern VT (RBVT):

- ✓ The latter portion of QRS in lead V₁ being a positive deflection
- Exit from LV in patients with/without SHD (structural heart disease)

#### LBBB pattern VT (LBVT):

- The latter portion of QRS in lead V<sub>1</sub> being a negative deflection
- ✓ Without SHD: *from RV*
- ✓ With SHD (common form): from LV (septum of < 1cm paraseptal</p>



Miller JM, et al. Card Electrophysiol Clin 9 (2017) 1

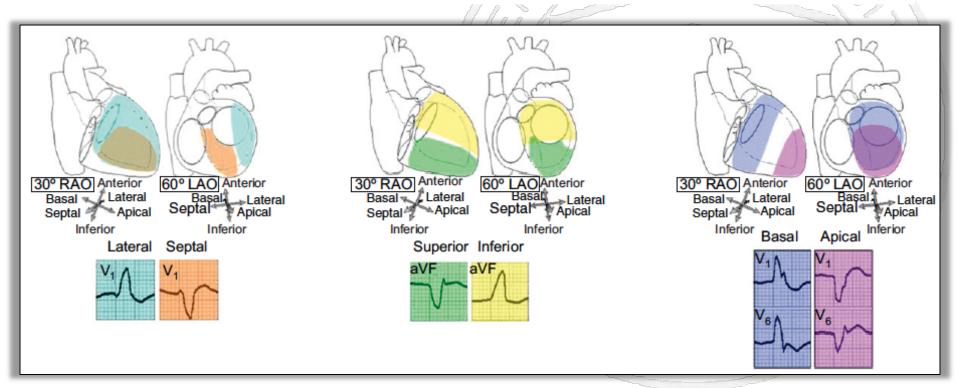
### ECG features suggesting VT related to scar

- Presence of Q waves (qR, QR or Qr) in related leads QS implies an electrical impluse moving away from the recording site
- Notched or wide ORS complexes Electrical activation is initiated in the viable myocytes with slow conduction
- Low QRS voltage

Larger scar with less viable myocardium

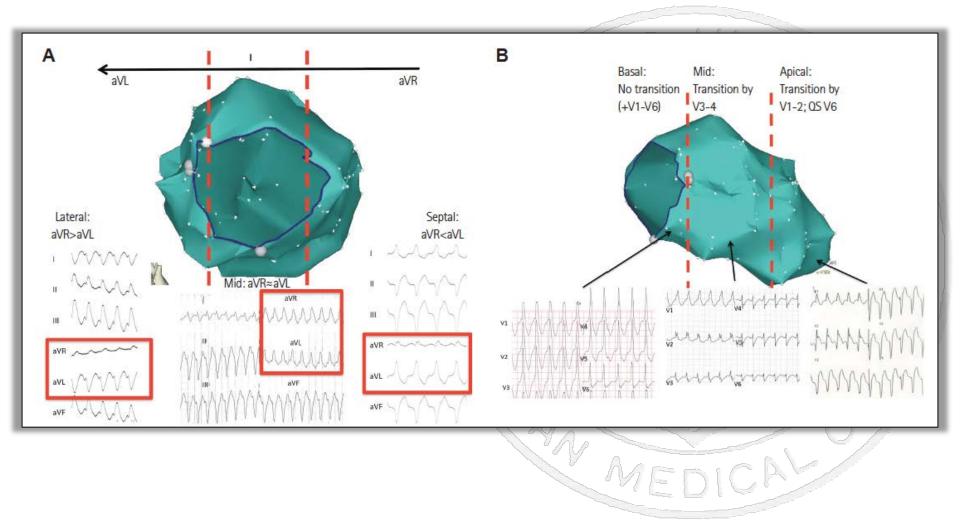
- Multiple morphologies of monomorphic VT
- Paroxysmal sustained episodes

Benito B & Josephson ME. Rev Esp Cardiol 2012;65:939


V/ CE

KUDMC

Keimyung University Dongsan Medical Center


#### Locate the Reentrant Circuit Exit

Localization of documented VT ECG allows for procedural planning, particularly regarding vascular access, and for guiding the initial mapping procedure



Benito B & Josephson ME. Rev Esp Cardiol 2012;65:939

#### Locate the Reentrant Circuit Exit

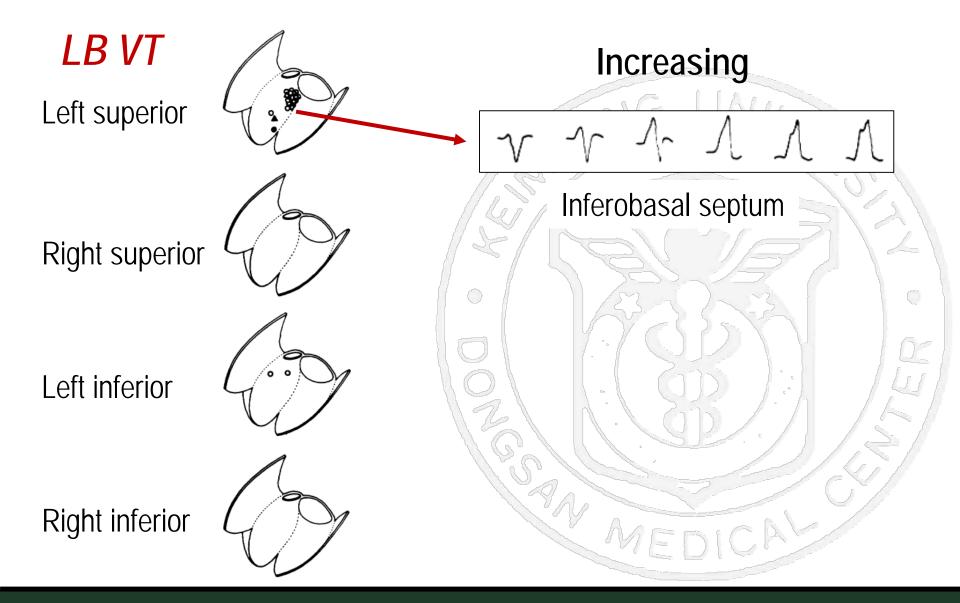


#### Keimyung University Dongsan Medical Center

Nazer B & Gestenfeld EP. Korean Circ J 2014;44:201

Relationship between the 12-lead ECG during VT & endocardial site of origin in patients with CAD

- Endocardial mapping: 182 VTs from 108 patients
- Catheter:surgical:both=154:85:57 VTs
- ECG, characterized by 4 features
  - 1. Location of infarction
  - 2. BBB pattern
  - 3. Axis: four quadrants
  - 4. R wave progression pattern (RWP)
- Validation cohort: 110 VTs in 63 patients
  - ✓ 93% of the 65 VTs (59% of the total number) to which the algorithm could be applied

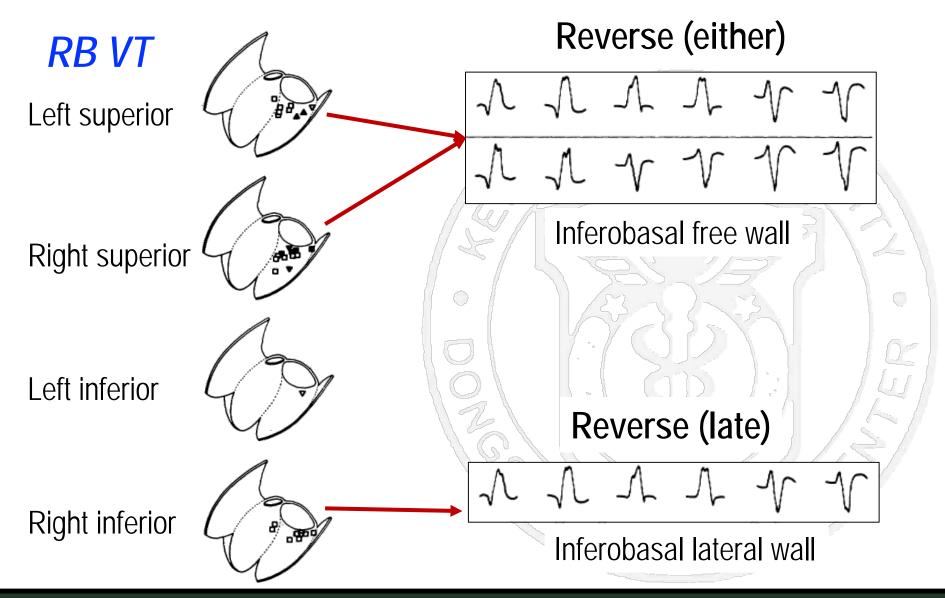

#### Relationship between the 12-lead ECG during VT & endocardial site of origin in patients with CAD

### RWP patterns NG

| RWP                                | , ba          | tte           | rns          | M                   | G.             | U/            | VIVE |
|------------------------------------|---------------|---------------|--------------|---------------------|----------------|---------------|------|
| PATTERN (NO.)                      | ٧             | $\vee_2$      | $\vee_3$     | V4                  | V <sub>5</sub> | √6            |      |
| INCREASING (30)                    | $\mathcal{V}$ | $\sim$        |              | Л                   | Л              | Λ             |      |
| NONE OR LATE (27)                  | $\sim$        | $\mathcal{N}$ | $\checkmark$ | $\mathcal{V}$       | $\sim$         | $\sim$        | B    |
| REGRESSION/GROWTH<br>(NOT QS) (18) | $\mathcal{N}$ | ~~            | $\sim$       | -√                  | V              | $\mathcal{N}$ | -3   |
| REGRESSION/GROWTH<br>(QS) (15)     | $\mathcal{N}$ | $\mathcal{N}$ | $\sim$       | V                   | $\sim$         | -/-           |      |
| DOMINANT (15)                      | Л             | Λ             | Л            | $\mathcal{\Lambda}$ | $\mathcal{M}$  | $\mathcal{N}$ | 1.1  |
| ABRUPT LOSS (20)                   | $\Lambda$     | $\Lambda$     | A            | $\mathcal{V}$       | $\mathcal{N}$  | $\mathcal{N}$ |      |
| LATE REVERSE (41)                  | $\mathcal{N}$ | $\mathcal{A}$ | Λ            | $\mathcal{N}$       | N              | $\sim$        |      |
| EARLY REVERSE (16)                 | $\mathcal{N}$ | N             | $\sim$       | V                   | V              | V             | CR   |

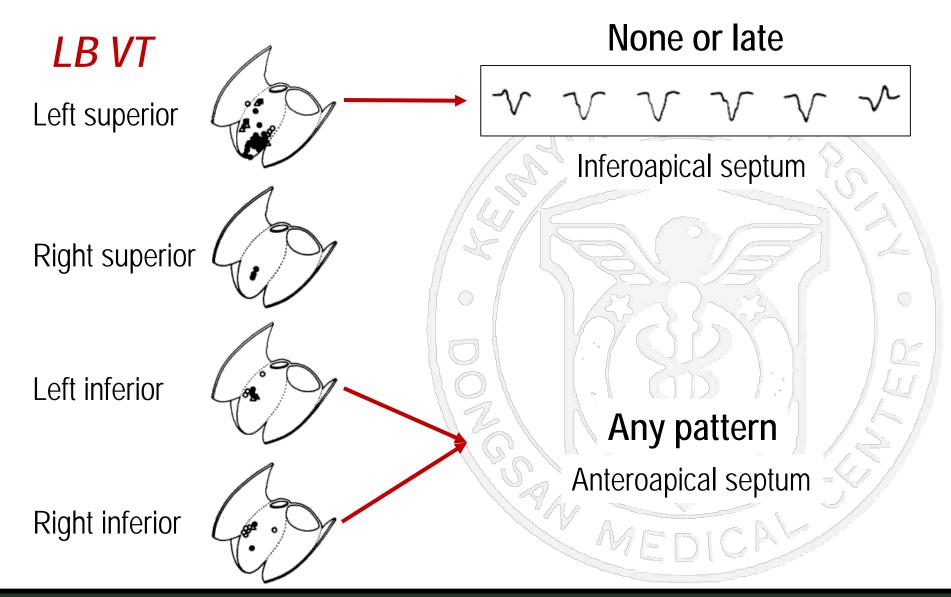
Miller JM et al. Circulation 1988;77:759

# Inferior infarction-dependent VT




Keimyung University Dongsan Medical Center

Miller JM et al. Circulation 1988;77:759

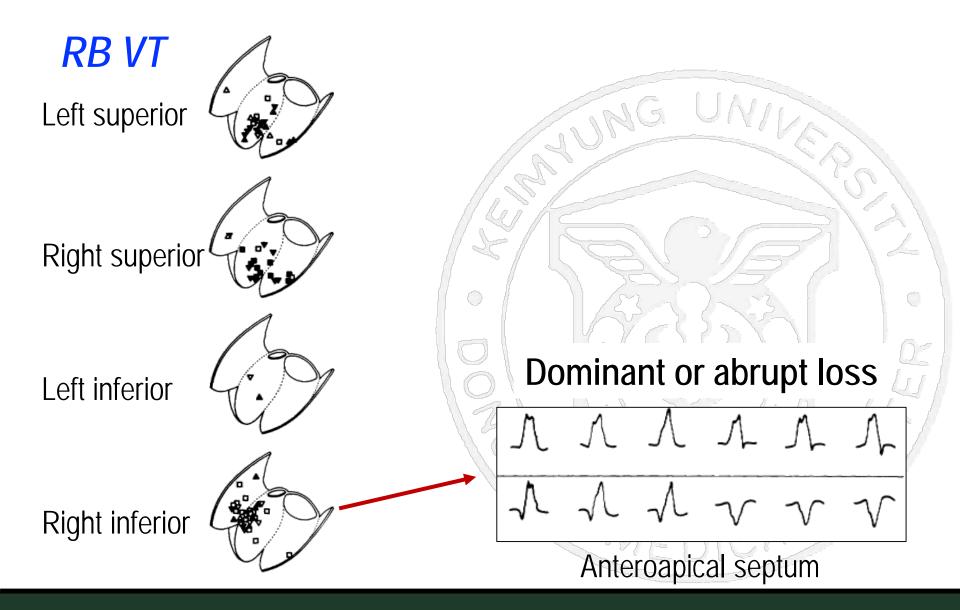

### ~ KUDMC

# **Inferior infarction-dependent VT**



Miller JM et al. Circulation 1988;77:759

# Anterior infarction-dependent VT




Keimyung University Dongsan Medical Center

Miller JM et al. Circulation 1988;77:759

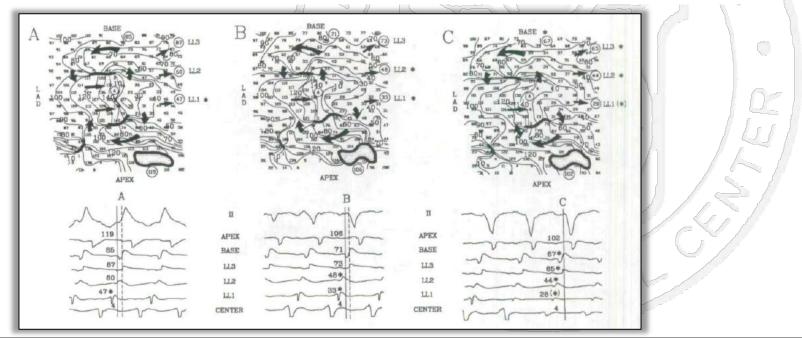


# **Anterior infarction-dependent VT**



Keimyung University Dongsan Medical Center

Miller JM et al. Circulation 1988;77:759


Relationship between the 12-lead ECG during VT & endocardial site of origin in patients with CAD

the 12-lead ECG during VT contains adequate information to specify a region of the LV endocardium that is likely to contain the VT site of origin in approximately half of all VTs in patients with a single prior infarction

Miller JM et al. Circulation 1988;77:759

Mechanism for spontaneous changes in QRS morphology ~ During Reentrant VT in a Canine Infarct Model

 Small changes in conduction velocity in the segment of the circuit, which modified the length of the functional lines of block resulted in a shift of the exit
→ QRS morphology changes





# How to define the reentry circuit of VT

- 1. Detailed history taking of *past medical history*: MI, surgery, heart failure, family history, etc
- 2. Localization by *surface ECG of VT*
- 3. Localization by *cardiac imaging*
- 4. Electrophysiologic study
  - ✓ *Substrate mapping*: abnormal signals @ sinus rhythm
  - ✓ Activation mapping & entrainment mapping
  - ✓ Pacemapping during sinus rhythm based on substrate mapping





# How to define the reentry circuit of VT

- 1. Detailed history taking of *past medical history*: MI, surgery, heart failure, family history, etc
- 2. Localization by *surface ECG of VT*
- 3. Localization by *cardiac imaging*
- 4. Electrophysiologic study
  - ✓ Substrate mapping: abnormal signals @ sinus rhythm
  - Activation mapping & entrainment mapping
  - Pacemapping during sinus rhythm based on substrate mapping

- Endocardial mapping with 5mm inter-electrode distance
- 52 patients with 102 monomorphic ischemic VT
- Normal signal: ≥ 3 mV amplitude & ≤ 70ms duration Normal amplitude/duration: ≥ 0.046
- ✓ 546 EGMs (10.5/patient): 102 EGMs from site of origin
- ✓ Abnormal 312 EGMs (58%), normal 234 EGMs (42%)
- ✓ Mean abnormal amplitude: 1.4±0.9 mV
- ✓ Mean abnormal duration: 93±40 ms
- ✓ Mean abnormal amplitude/duration: 0.017±0.012

JUNG

| 1                     | Comparison of electrograms of site of origin with those not of site of origin |                                        |  |  |  |
|-----------------------|-------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| ۵۷۶<br>۷ <sub>1</sub> | -                                                                             | lon-site<br>f origin p value           |  |  |  |
|                       |                                                                               | $6 \pm 2.8$ <.001<br>$75 \pm 27$ <.001 |  |  |  |
| ABNORMAL              |                                                                               | 8±0.055 <.001                          |  |  |  |
| FRACTIONATED          |                                                                               | ZS/                                    |  |  |  |
|                       | MEDIC                                                                         | 2                                      |  |  |  |

Cassidy DM, et al. Circ 1984a;69:1103

Although all values reached statistical significance, *much overlap between the groups was noted* 

| Electrogram type  | Site of origin | Non-site<br>of origin | Total (%)<br>of all<br>electrograms |
|-------------------|----------------|-----------------------|-------------------------------------|
| Normal            | 14             | 220                   | 234 (42)                            |
| Abnormal          | 88             | 224                   | 312 (58)                            |
| Fractionated      | 10             | 37                    | 47 (9)                              |
| Abnormal late     | 26             | 54                    | 80 (15)                             |
| Fractionated late | 8              | 18                    | 26 (5)                              |
| Longest           | 16             | 36                    | 52 (10)                             |

We found that electrograms from *the site of origin were of significantly lower amplitude and longer duration*; however, because such an overlap occurred with electrograms that were not from sites of origin, this *does not serve as a useful clinical marker* ~~ *None of these types* possessed the ability to *reliably localize the site of origin* of ventricular tachycardia.

We therefore conclude that *endocardial catheter mapping during sinus rhythm is not useful as a guide* in localized surgical therapy of ventricular tachycardia

*Cassidy DM, et al. Circ* 1984a;69:1103



Catheter Ablation of Ventricular Tachycardia After Myocardial Infarction: Relation of Endocardial Sinus Rhythm Late Potentials to the Reentry Circuit

- 24 patients with ischemic VT
- 103 sites of EGM during sinus rhythm & attempted to terminate VT by RF
- Late potential (LP) present at 34 sites (33%)

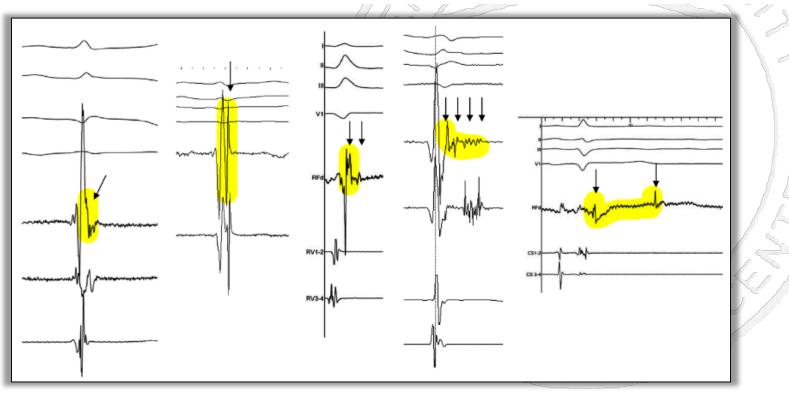
|                                     | 11 1 and 11 and 1 |                   |                   | 193 J     |
|-------------------------------------|-------------------|-------------------|-------------------|-----------|
|                                     | Total Sites       | LP Positive Sites | LP Negative Sites | p Value   |
| Pace mapping S-QRS (ms)             |                   |                   |                   | < 0.0001  |
| <41                                 | 9                 | 0                 | 9 (100)           |           |
| 41-80                               | 41                | 7 (17)            | 34 (83)           |           |
| >80                                 | 31                | 19 (61)           | 12 (39)           |           |
| Reentry circuit site classification |                   |                   |                   | < 0.0001* |
| Exit                                | 13                | 3 (23)            | 10 (77)           |           |
| Central/proximal                    | 21                | 15 (71)           | 6 (29)            |           |
| Inner loop                          | 13                | 2 (15)            | 11 (85)           |           |
| Outer loop                          | 17                | 1 (6)             | 16 (94)           |           |
| Adjacent bystander                  | 12                | 9 (75)            | 3 (25)            |           |
| Remote bystander                    | 27                | 4 (15)            | 23 (85)           |           |
| Isolated potential in VT            |                   |                   |                   | 0.32      |
| Isolated potential                  | 24                | 10 (43)           | 14 (57)           |           |
| No isolated potential               | 79                | 24 (31)           | 55 (69)           |           |
| Effect of RF on VT                  |                   |                   |                   | 0.004     |
| VT terminated                       | 37                | 20 (54)           | 17 (46)           |           |
| VT not terminated                   | 66                | 14 (21)           | 52 (79)           |           |

#### Keimyung University Dongsan Medical Center

#### Harada T, et al. J Am Coll Cardiol 1997;30:1015

Catheter Ablation of Ventricular Tachycardia After Myocardial Infarction: Relation of Endocardial Sinus Rhythm Late Potentials to the Reentry Circuit

NG UNIT


#### Conclusions

Although sites with sinus rhythm late potentials often participate in VT reentry circuits, *many reentry circuit sites do not have late potentials. Late potentials can also arise from bystander regions*. Late potentials may help identify abnormal regions in sinus rhythm but *cannot replace mapping during induced VT to guide ablation* 

Elimination of Local Abnormal Ventricular Activities A New End Point for Substrate Modification in Patients With Scar-Related Ventricular Tachycardia

LAVAs (Local Abnormal Ventricular Activities)

 sharp high-frequency ventricular potentials, possibly of low amplitude, distinct from the far-field ventricular electrogram



Keimyung University Dongsan Medical Center

Jais P, et al. Circulation 2012;125:2184

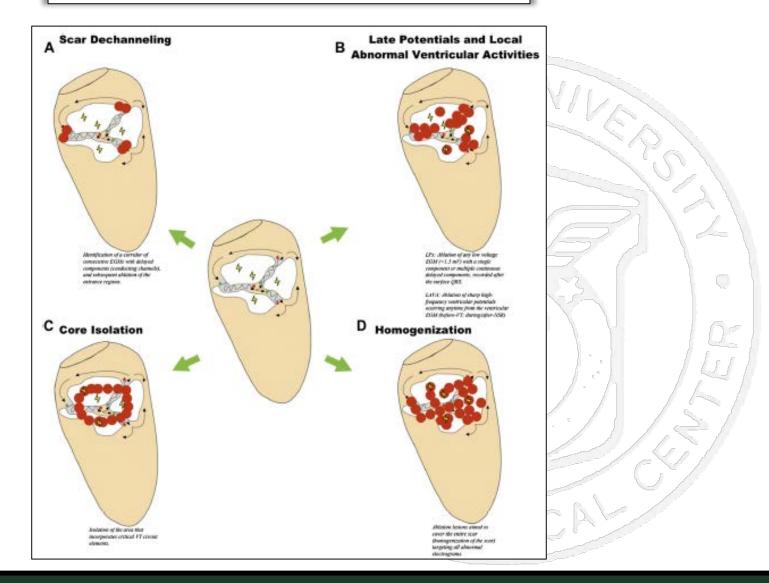
Elimination of Local Abnormal Ventricular Activities A New End Point for Substrate Modification in Patients With Scar-Related Ventricular Tachycardia

- LAVAs were recorded in 67/70 patients (95.7%)
- LAVAs occupied 16% ( $39\pm32$  cm<sup>2</sup> of the 245 $\pm174$  cm<sup>2</sup>) of the LV surface

|                                                     | All Patients<br>(n=70) | LAVAs Eliminated (n=47) | LAVAs Not Eliminated (n=20) | Р*   |
|-----------------------------------------------------|------------------------|-------------------------|-----------------------------|------|
| LAVA endocardial amplitude, mV                      | 0.11 (0.08-0.22)       | 0.12 (0.08-0.21)        | 0.14 (0.10-0.29)            | 0.41 |
| LAVA epicardial amplitude, mV                       | 0.37 (0.20-0.60)       | 0.39 (0.20-0.70)        | 0.22 (0.18-0.50)            | 0.38 |
| Far-field ventricular endocardial amplitude, mV     | 0.20 (0.10-0.50)       | 0.18 (0.10-0.60)        | 0.25 (0.10-0.43)            | 0.80 |
| Duration of far-field ventricular signal, ms        | 60 (50-83)             | 61 (50-80)              | 60 (50–108)                 | 0.66 |
| Endocardial far-field ventricular to LAVA delay, ms | 80 (60–110)            | 90 (70–115)             | 70 (55–100)                 | 0.13 |
| Endocardial QRS to LAVA delay, ms                   | 0 (0-40)               | 20 (0-40)               | 0 (0-40)                    | 0.50 |

Elimination of Local Abnormal Ventricular Activities A New End Point for Substrate Modification in Patients With Scar-Related Ventricular Tachycardia

ANG UNIT


MEDIC

In multivariate analysis, *LAVA elimination was independently associated with a reduction in recurrent VT or death* (hazard ratio, 0.49; 95% confidence interval, 0.26–0.95; P 0.035) during long-term follow-up (median, 22 months).

*Conclusions* — LAVAs can be identified in most patients with scar-related VT. *Elimination of LAVAs is feasible and safe* and is associated with superior survival free from recurrent VT

Jais P, et al. Circulation 2012;125:2184

## Substrate Ablation of VT



#### Keimyung University Dongsan Medical Center

Briceño DF, et al. Card Electrophysiol Clin 9 (2017) 81

**KUDMC** 

#### **Substrate Ablation of VT**

|               |                                        |                |                |           |          | f j                             | MA   | 5.    | JRI   |        |                    |
|---------------|----------------------------------------|----------------|----------------|-----------|----------|---------------------------------|------|-------|-------|--------|--------------------|
| B             |                                        | Ven            | tric           | ular A    | rrhyt    | hmia                            | Recu | rren  | ce    |        |                    |
| Study name    | Statistics for each study Events / Tot |                |                |           |          | MH risk ratio and 95% CI        |      |       |       |        |                    |
|               | MH risk<br>ratio                       | Lower<br>limit | Upper<br>limit | Substrate | Standard |                                 |      |       |       |        | Relative<br>weight |
| Arenal        | 1.33                                   | 0.18           | 9.72           | 4/18      | 1/6      |                                 |      |       | -     |        | 5.74               |
| Volkmer       | 1.17                                   | 0.48           | 2.86           | 8/25      | 6/22     |                                 |      |       | s - 1 |        | 16.44              |
| Ventura       | 1.71                                   | 0.60           | 4.86           | 6/14      | 4 / 16   |                                 |      | . +=- | -     |        | 14.01              |
| Di Biase 2012 | 0.40                                   | 0.20           | 0.79           | 8/43      | 23/49    |                                 |      |       |       |        | 20.17              |
| Makimoto      | 0.70                                   | 0.40           | 1.24           | 15/50     | 15/35    |                                 |      |       |       |        | 22.71              |
| Di Biase 2015 | 0.32                                   | 0.17           | 0.62           | 9/58      | 29/60    |                                 |      |       |       |        | 20.94              |
|               | 0.68                                   | 0.40           | 1.15           | 50/208    | 78 / 188 | 1                               | 1 0  |       | 1     | 1      |                    |
|               |                                        |                |                |           |          | 0.01                            | 0.1  | 1     | 10    | 100    |                    |
|               |                                        |                |                |           |          | Favors Substrate Favors Standar |      |       |       | andard |                    |
|               |                                        |                |                |           |          | 12                              | N    |       |       |        |                    |
|               |                                        |                |                |           |          |                                 | 1 M  | F     | NC B  | 16     |                    |

Briceño DF, et al. Card Electrophysiol Clin 9 (2017) 81

**KUDMC** 

#### **Substrate Ablation of VT**

| C                         |                  |              |                | All-C         | ause         | Morta                            | ality | 6. ( | JNI |     |                    |
|---------------------------|------------------|--------------|----------------|---------------|--------------|----------------------------------|-------|------|-----|-----|--------------------|
| Study name                | Statistics       | 2            | 22             | <u>Events</u> | s / Total    | MH risk ratio and 95% CI         |       |      |     |     |                    |
|                           | MH risk<br>ratio | Lower        | Upper<br>limit | Substrate     | Standard     |                                  |       |      |     |     | Relative<br>weight |
| Arenal<br>Volkmer         | 0.33             | 0.06<br>0.17 | 1.88<br>2.63   | 2/18<br>3/25  | 2/6<br>4/22  | 1                                | +-    | ╈    | .   | Ĩ   | 14.59<br>20.69     |
| Di Biase 2012             | 1.14             | 0.07         | 17.67          | 1/43          | 1/49         |                                  |       | -    |     |     | 4.55               |
| Makimoto<br>Di Biase 2015 | 0.47<br>0.57     | 0.08         | 2.65<br>1.61   | 2/50<br>5/58  | 3/35<br>9/60 |                                  | -     |      |     |     | 17.16<br>43.02     |
|                           | 0.56             | 0.29         | 1.09           | 13 / 194      | 19/172       | 0.01                             | 0.1   | 1    | 10  | 100 |                    |
|                           |                  |              |                |               |              | Favors Substrate Favors Standard |       |      |     |     |                    |
|                           |                  |              |                |               |              | R.                               | 2 M   | ED   | ICP |     |                    |

Briceño DF, et al. Card Electrophysiol Clin 9 (2017) 81

**KUDMC** 

## Electrograms during sinus rhythm

Abnormal electrogram, late potential, & LAVA can help to *identify the possible arrhythmogenic area* of VT circuit

NG UNIDA

Substrate mapping itself could not help to define the reentrant circuit

## Response to overdrive pacing

◆ Overdrive pacing can aid in choosing target site for ablation
✓ By helping determine tachycardia mechanism
✓ By helping validate putative ablation sites

#### Ablation target

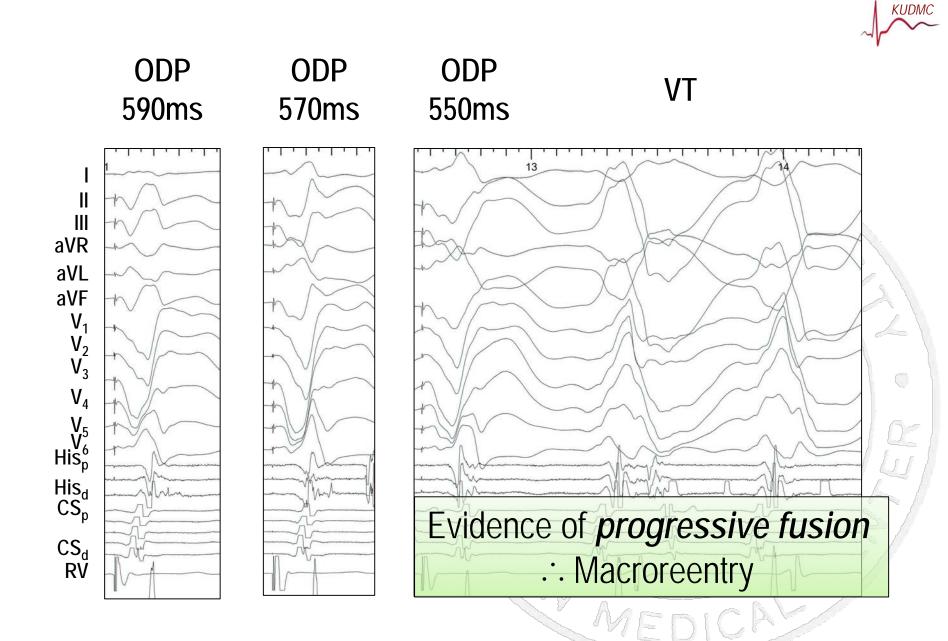
- Focal tachycardia: presystolic potential (late diastolic)
- Microreentry: *long fragmented diastolic potential*
- Macroreentry: mid-diastolic potential

## Entrainment

To declare entrainment is present, fusion must be unequivocally demonstrated (except, microreentry)

#### FUSION is NOT

- *Mere capture* with overdrive pacing
- Overdrive pacing followed by tachycardia termination
- Overdrive pacing followed by *change in tachycardia*


#### ~ KUDMC

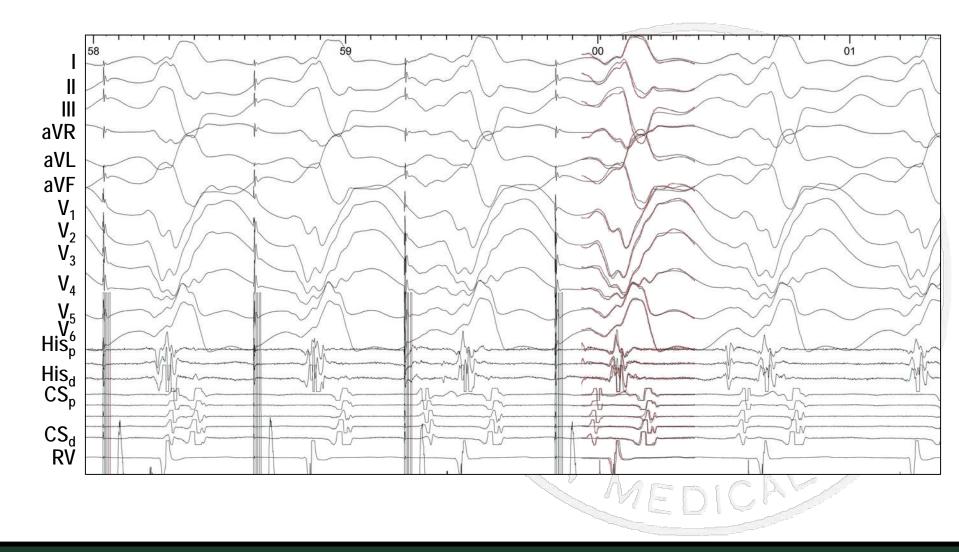
## Entrainment

To declare entrainment is present, fusion must be unequivocally demonstrated (except, microreentry)

#### FUSION is PRESENT when

- A clear **blend** of **fully paced + full tachycardia** complexes
- Observe stimulus artifact after onset of accelerated complex
  - ✓ evidence that the tachycardia wavefront have exited from the circuit
- *Progressive fusion*: Show graded change in activation at different paced rates






## **Entrainment Lingo**

- Entrainment with Manifest fusion
- Entrainment with Concealed fusion
  - Other entrainment criteria are met but no fusion is seen (pacing looks exactly like tachycardia) due to pacing in a protected diastolic zone
  - Pacing from the same site during sinus rhythm could produce a different morphology as long as antidromic conduction through the protected area can occur



#### Overdrive pacing: *Concealed fusion*



## Entrainment Mapping

Simple demonstration of *entrainment alone does not indicate the location* of the pacing site relative to the reentry circuit

- Other parameters are needed to localize the circuit
  - Timing of EGM to QRS: systolic vs. diastolic
  - > **QRS configuration** during entrainment
  - > **PPI** after entrainment
  - S-QRS & EGM-QRS and its relationship to the VT CL

## Entrainment Mapping

KUDMC

#### Pacing from the Sites Outside the Reentrant Circuit

- Manifest fusion on surface ECG or intracardiac recording, or both
- PPI-TCL > 30 msec
- Stimulus-exit interval > electrogram-exit interval

Pacing from the Sites Inside the Reentrant Circuit

- Manifest fusion on surface ECG or intracardiac recording, or both
- PPI-TCL < 30 msec
- Stimulus-exit interval = electrogram-exit interval (± 20 msec)

Pacing from a Protected Isthmus Inside the Reentrant Circuit

- Concealed fusion
- PPI-TCL < 30 msec
- Stimulus-exit interval = electrogram-exit interval (± 20 msec)

## **Entrainment Mapping**

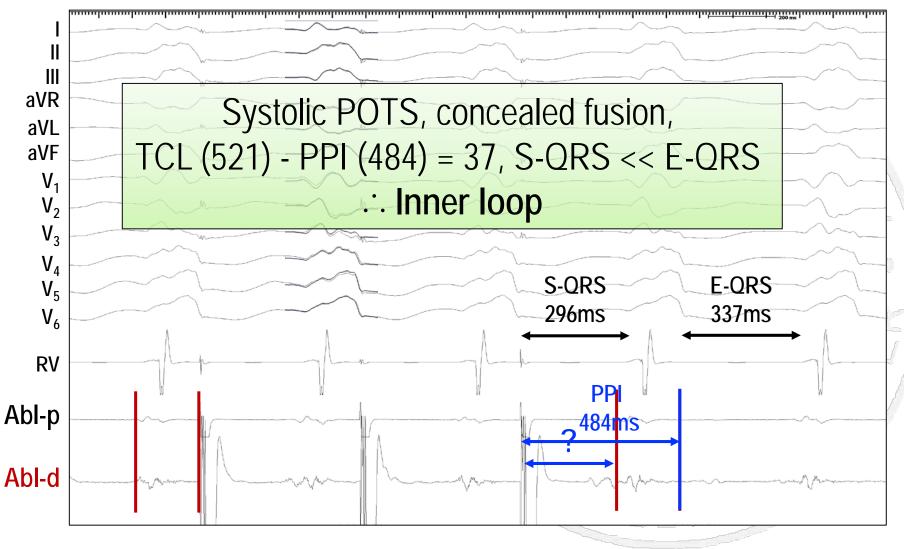
## **Entrainment with concealed fusion**

**PPI > TCL** : bystander of diastolic corridor

#### ↔ PPI ≈ TCL : within diastolic corridor

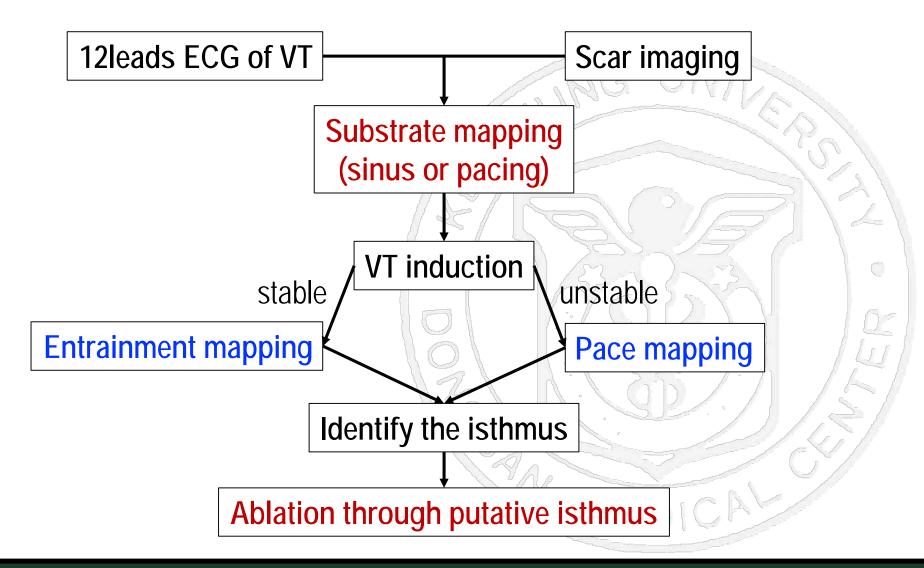
- S-EGM < 0.25 X diastolic interval : exit site
- S-EGM 0.25 to 0.75 X diastolic interval : mid-corridor
- S-EGM > 0.76 X diastolic interval : entrance site




| Site of stimulation   | Fusion    | S-QRS                         | PPI   |
|-----------------------|-----------|-------------------------------|-------|
| Central isthmus       | Concealed | = E-QRS in VT (30~70% of TCL) | = TCL |
| Exit site             | Concealed | = E-QRS in VT                 | = TCL |
| Entrance site         | Concealed | = E-QRS in VT                 | = TCL |
| Inner loop            | Concealed | < E-QRS in VT                 | = TCL |
| Bystander             | Concealed | > E-QRS in VT                 | > TCL |
| Outer loop            | Manifest  | < E-QRS in VT                 | = TCL |
| Away from the circuit | Manifest  | varies                        | > TCL |

Keimyung University Dongsan Medical Center

Benito B & Josephson ME. Rev Esp Cardiol 2012;65:939




### Overdrive pacing: Concealed fusion











# Thank You for Your Attention !

Seongwook Han, MD.PhD.

Professor of Medicine, Keimyung University School of Medicine Arrhythmia Service, Cardiology, Dongsan Medical Center